Prototype Discriminative Learning for Face Image Set Classification
نویسندگان
چکیده
منابع مشابه
Face Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملIterative deep learning for image set based face and object recognition
We present a novel technique for image set based face/object recognition, where each gallery and query example contains a face/object image set captured from different viewpoints, background, facial expressions, resolution and illumination levels. While several image set classification approaches have been proposed in recent years, most of them represent each image set as a single linear subspa...
متن کاملLinear Subspace Learning based on a Learned Discriminative Dictionary for Sparse Coding
Learning linear subspaces for high-dimensional data is an important task in pattern recognition. A modern approach for linear subspace learning decomposes every training image into a more discriminative part (MDP) and a less discriminative part (LDP) via sparse coding before learning the projection matrix. In this paper, we present a new linear subspace learning algorithm through discriminative...
متن کاملLearning graph prototypes for shape recognition
This paper presents some new approaches for computing graph prototypes in the context of the design of a structural nearest prototype classifier. Four kinds of prototypes are investigated and compared : set median graphs, generalized median graphs, set discriminative graphs and generalized discriminative graphs. They differ according to (i) the graph space where they are searched for and (ii) t...
متن کاملDiscriminative Probabilistic Prototype Learning
In this paper we propose a simple yet powerful method for learning representations in supervised learning scenarios where an input datapoint is described by a set of feature vectors and its associated output may be given by soft labels indicating, for example, class probabilities. We represent an input datapoint as a K-dimensional vector, where each component is a mixture of probabilities over ...
متن کامل